
Contents
1 Test Bed Engine 31.1 Test Bed Login . 31.2 Running TBE . 51.3 Subsystem Simulation . 51.4 Data Strutures . 91.5 Error Handling . 92 Web Interfae Unit 112.1 CAN Identi�ers . 112.2 Test Case Sets . 122.3 Tests . 132.4 Test Reports . 163 CAN Monitor Unit 193.1 CAN Composer . 193.2 CAN Viewer . 20

1

Test Bed Engine Chapter11.1 Test Bed LoginThe Test Bed Engine (TBE) must be started before strutured tests an be performed, or theCAN monitor an be used.Figure 1.1 shows an overview of the CAN ards installed in the test bed omputer (TBC). Thebottom part of the �gure ontains a list of whih satellite subsystems are simulated on whatCAN port. The users must �ll in the name of the subsystems belonging to eah port.

uSocket: 11
IRQ: 4IRQ: 4

uSocket: 9
Application: Subsystem1

Application: Subsystem6
uSocket: 5
IRQ: 11

Application: Subsystem4
uSocket: 7
IRQ: 9

IRQ: 9
uSocket: 9
Application: Subsystem2

Application: Unused
uSocket: 11

Application: TBE

Port 2 (C2P2)

Port 1 (C1P1)Port 2 (C1P2)

Port 1 (C4P1)Port 2 (C4P2)

Port 1 (C3P1)Port 2 (C3P2)

Port 1 (C2P1)

Card 1

Card 2

Card 4

Card 3

Subsystem1: _____________________________

IRQ: 9

Subsystem2: _____________________________

Subsystem3: _____________________________

Subsystem4: _____________________________

Subsystem5: _____________________________

uSocket: 5
IRQ: 11

Subsystem6: _____________________________

Application: Subsystem5

IRQ: 9
uSocket: 7
Application: Subsystem3

Figure 1.1: The CAN ards in the test bed omputer, as seen from the rear of theomputer.The TBC is a 2.4 GHz Pentium 4 PC running Mandrake Linux 9.2. The �rst thing to do whenoperating the TBC is to log on. The user name and password is:
User name: root

Password: testbedWhen logged in, the next step is to start the graphial environment XFree86. This is done byissuing a startx ommand in the shell following the login prompt. 3

1.1 Test Bed Login Test Bed EngineThe startx ommand starts the Windowmaker window manager on top of XFree86. Thedesktop of Windowmaker is shown in �gure 1.2.

Figure 1.2: The desktop of the TBC.The desktop ions related to the test bed, are the three ions loated in the bottom of the rightside of the sreen. These three ions starts the TBE, the CAN monitor, and the web interfae,as desribed in table 1.1.Ion: Command: Desription:
testbed Start Test Bed Engine
testbedgui Start CAN Monitor Unit
firebird Start Web Interfae UnitTable 1.1: The ions for ontrolling the test bed, and the ommands exeuted.Note that the ommand for starting the web interfae unit is firebird. This ommand startsa browser, beause the atual web interfae unit is started when the Apahe web-server installedon the TBC is started. This is done automatially when the TBC is started.4

Test Bed Engine 1.2 Running TBE1.2 Running TBEBy double liking on the top most ion, the TBE is started in a terminal. This terminal isshown in �gure 1.3.

Figure 1.3: The TBE terminal.When this sreen is displayed, the TBE is ready to serve the CAN monitor and the web interfae.Before the TBE is started, a number of kernel modules must be loaded. This is done automat-ially when starting Windowmaker, but the modules an also be managed manually by usingthe following ommands:Command: Desription:
testbedload Loads the modules and reates devie �les for CAN ards.
testbedunload Unloads the modules.Table 1.2: Commands for managing kernel modules needed by the TBE.From the TBE terminal in �gure 1.3, the TBE an be stopped by pressing �q�.1.2.1 Managing CAN CardsA help menu an be shown by pressing �h�. The help menu is intended for debug purpose, andshown in �gure 1.4. The ontents of this menu makes it possible to perform ations diretly onthe CAN ards.The top most group of keys in the menu are used to selet whih CAN ard the other keygroups operate on. The middle group of keys is labelled �Communiation Keys�, and used totransmit random CAN frames. The last group of keys is used to perform administration taskson the CAN ards. A tehnial desription of these tasks an be found in the Softing manual.1.3 Subsystem SimulationTo simulate a subsystem in the TBE software, the subsystem ode must be implemented in aspei� C �le. The TBE is loated in /testbed/tbe, and this diretory ontains a subdiretory for5

1.3 Subsystem Simulation Test Bed Engine

Figure 1.4: The TBE help sreen.

Subsystem: File path:Subsystem1 /testbed/tbe/ard2/port1.Subsystem2 /testbed/tbe/ard2/port2.Subsystem3 /testbed/tbe/ard3/port1.Subsystem4 /testbed/tbe/ard3/port2.Subsystem5 /testbed/tbe/ard4/port1.Subsystem6 /testbed/tbe/ard4/port2.Table 1.3: The subsystems and their �le paths.
6

Test Bed Engine 1.3 Subsystem Simulationevery ard number. In eah of these diretories a port1. and port2. is present. The subsystemsare simulated on ard 2, 3, and 4, giving the set of subsystem �les listed in table 1.3.The struture of these �les are all idential. Eah �le ontains two funtions and a thread whihis signalled every time a CAN frame is reeived. (Note: A subsystem thread is NOT signalledwhen a planned test is running, IF the subsystem is not spei�ed as part of the test.) Thefuntions and the thread is listed in table 1.4 for subsystem 1.Funtion/thread: Desription:C2P1main(void) Funtion for reating the thread and on�guringthe aeptane �lter of the port.C2P1stop(void) Funtion for stopping the thread.*C2P1ThreadFuntion(void *arg) Thread signalled when inoming frames are re-eived.Table 1.4: The funtions and thread of a subsystem.The �C2� in the funtion names refer to �Card 2� and �P1� refers to �Port 1�.The two funtions and the thread of table 1.4 are desribed in the following.1.3.1 C2P1Main()This funtion is exeuted when the TBE is started. The funtion on�gures the aeptanemask and aeptane ode for the paket �ltering, done by the CAN ards. CAN frames withidenti�ers that do not math the bit pattern of the �lter are disarded by the CAN ards,without notifying the appliation or generating interrupt. A �lter ontains two registers:Aeptane mask: De�nes whih bits to onsider in the identi�er.Aeptane ode: De�nes the value of the onsidered bits.When setting the �lter, a bit value of �1� in the mask means that the bit is to be onsidered,and a �0� means that the bit is a don't are. A �1� in the aeptane ode means that IF this bitis to be onsidered (i.e. it is set in the aeptane mask), then the orresponding identi�er bitmust have a value of �1� to be aepted. For an aeptane ode bit value of �0� the identi�erbit has to be �0� as well, taken that the same bit is �1� in the aeptane mask.Sine the test bed an operate on both standard and extended identi�ers, two versions of the�lter registers exist. The soure ode of C2P1Main() is shown below:
int C2P1main(void)
{

int CardNr = 2;
/* Acceptance filter Port 1 */
CardSettings[CardNr].ACCEPT_MASK_1 = 0x0000;
CardSettings[CardNr].ACCEPT_CODE_1 = 0x0000;
CardSettings[CardNr].ACCEPT_MASK_XTD_1 = 0x00000000L;
CardSettings[CardNr].ACCEPT_CODE_XTD_1 = 0x00000000L;

pthread_create(&C2P1Thread,NULL,(*C2P1ThreadFunction),NULL);
return 0;

} 7

1.3 Subsystem Simulation Test Bed EngineNote that the C2P1Main() only on�gures the aeptane �lters in the C data strutureCardSettings[℄. The atual aeptane �lter on�guration is done by the routine that initialisesthe CAN ards. This routine reads the data struture and stores the settings in the appropriateregister on the CAN ard. This implies that any hange of �lter settings done after initialisationis not ativated.After storing the �lter settings, the C2P1Main() reates a pthread for the routine for reeivingCAN frames.1.3.2 C2P1Stop()The C2P1Stop() funtion does not do anything, exept destroying the thread reated by
C2P1Main(). C2P1Stop() is alled when the TBE is stopped, and the soure ode isshown below.

int C2P1stop(void)
{

pthread_cancel(C2P1Thread);
return 0;

}1.3.3 C2P1ThreadFuntion()The C2P1ThreadFunction() is reated by C2P1Main(), and is a thread that is invokedby a signal, every time a CAN frame that mathes the aeptane �lter is reeived on the port.The soure ode of the funtion is shown below.
void *C2P1ThreadFunction(void *arg)
{

CanInFrame thisframe;
CanOutFrame outframe;
int CardNr;
int portNr;
portNr = 1;
CardNr = 2;
while(1)

{
pthread_cond_wait(&C2P1Cond,&C2P1Lock);

while(!empty(&portQueue1[CardNr]))
{
LockQueue("P1Queue",CardNr); /* Lock the Queue */
thisframe = dequeue(&portQueue1[CardNr]); /* Dequeue data from PortQueue1 */
UnlockQueue("P1Queue",CardNr); /* Unlock the Queue */

/* ** *
* SUBSYSTEM SIMULATION CODE BELOW
* EXAMPLE SUBSYSTEM:
* If Identifier 200 is received, identifier 300 is replied with data...
* ** */

if(thisframe.Ident == 200)
{

outframe.Ident = 300; /* Set outgoing identifier */
outframe.XMT_data[0] = 0x02; /* Outgoing B0 */
outframe.XMT_data[1] = 0x01; /* Outgoing B1 */
outframe.XMT_data[2] = 0x0;
outframe.XMT_data[3] = 0x0;
outframe.XMT_data[4] = 0x0;
outframe.XMT_data[5] = 0x0;
outframe.XMT_data[6] = 0x0;
outframe.XMT_data[7] = 0x0;
outframe.DataLength = 8; /* Set outgoing data length */
outframe.Xtd = 1; /* Send as extended frame */
outframe.Rtr = 0; /* Send as data frame */
sendFrame(outframe,portNr,CardNr);

}
}

}
}8

Test Bed Engine 1.4 Data StruturesWhen the thread is reated, the funtion exeutes into the while(1) loop and stops at the
pthread_cond_wait all. This is the reeption point where the signal of inoming framesis reeived. In this example, the funtion operates with one instane of the two data strutures
CanInFrame and CanOutFrame. These data strutures are used for inoming and outgoingCAN frames respetively. The ontents of these strutures is desribed in setion 1.4.When the C2P1ThreadFunction() reeives a signal, the exeution ontinues. First thequeue, from whih inoming frames are reeived, is loked. Then the data is taken from thequeue and stored in a loal instane of the CanInFrame struture. The queue is then unlokedagain.The next thing to be proessed is the atual subsystem simulation ode. In this example, it isheked if the reeived frame has an identi�er of 200, and if that is the ase, a reply with identi-�er 300 is sent. The funtion used for sending is sendFrame(outframe,portNr,CardNr).When the soure ode of a subsystem is altered, the TBE needs to be reompiled and restartedfor the hanges to take e�et. This is done by issuing the make ommand in the /testbed/tbediretory.This ommand ompiles eah subsystem, the TBE, and a CAN ard library separately, and linksthe o-�les together to a single exeutable. This exeutable is linked symboli to the ommand
testbed, whih is used to start the TBE.1.4 Data StruturesThe data strutures needed when programming subsystem simulation are CanInFrame and
CanOutFrame. These strutures are shown in table 1.5 and 1.6.Name: Type: Size: Desription:
Ident Unsigned long 4 bytes CAN identi�er.
DataLength Integer 4 bytes Length of data.
RCV_data[8] Unsigned har 8 · 1 byte Data bytes reeived.
UnixTime Unsigned long long 8 bytes Time stamp with resolution of 1 µs.
frameType Integer 4 bytes The frame type.Table 1.5: Parameters in the data struture for inoming CAN frames.A desription of the possible frame types is given in the Softing manual, in table 4-8.1.5 Error HandlingThe TBE has extensive error handling inluded. When errors our, the return value of erroneousfuntions is evaluated against prede�ned onditions, and an error handling routine determineswhether the TBE should be shut down or ontinue operation. In both ases the ause of theerror is written to a log �le testbed.log, plaed in /testbed. 9

Name: Type: Size: Desription:
Ident Unsigned long 4 bytes CAN identi�er.
DataLenght Integer 4 bytes Length of data.
XMT_data[8] Unsigned har 8 · 1 byte Data bytes to be sent.
Xtd Integer 4 bytes Extended �ag: 1 = Ext. identi�er.0 = Std. identi�er.
Rtr Integer 4 bytes Remote �ag: 1 = Remote frame.0 = Data frame.Table 1.6: Parameters in the data struture for outgoing CAN frames.

Web Interfae Unit Chapter2The web interfae unit of the test bed is used to type in planned tests, run the tests, analysethe test results, and present the result for the user. It is split up into four parts, namely CANidenti�ers, test ase sets, tests, and test reports. The parts have their own link from the menuon the web-page, as seen on �gure 2.1.

Figure 2.1: Sreen-shot of the �rst page of the web interfae unit.The parts are plaed hronologially in the order they must be used. The �rst thing to do, isto type in the CAN identi�ers to be used in a test. The next thing to do is to speify the testase sets to be used in the test. After that, the test is spei�ed by a number of user inputs,and a number of test ase sets. One test an have one or more test ase sets.When the test is run, a test report is automatially generated, and the result is presented forthe user. The CAN identi�ers, test ase sets, tests, and test reports are all stored in a MySQLdatabase for further use and/or modi�ation.2.1 CAN Identi�ersWhen �CAN identi�ers� is hosen from the main menu, an overview of all the CAN identi�ersis shown. It is possible to order the CAN identi�ers by one of the headings. This is done by11

2.2 Test Case Sets Web Interfae Unitliking the heading. Eah CAN identi�er is edit-able by liking it. An identi�er an also bedeleted. If a CAN identi�er is deleted, be sure that it is not used in another test. If a newCAN identi�er is needed, press the �Create new CAN identi�er� link, and the sreen shown in�gure 2.2 appears.

Figure 2.2: Sreen-shot of the user interfae to type in CAN identi�ers.A CAN identi�er is given by a name, the identi�er (given in deimal format) and the AAUuser-name of the author.Sine the ommuniation on-board AAUSAT-II is only CAN frames with extended identi�ers,only extended identi�ers an be sent by the web interfae unit of the testbed.2.2 Test Case SetsThe test ase sets ontains the CAN identi�ers and the data to be sent on the CAN bus, andthe CAN identi�ers and data expeted to appear on the CAN bus during the test.When �Test Case Set� is seleted from the main menu, an overview of the test ase sets isshown. From here it is possible to order the test ase sets, delete, view/edit, and reate a newtest ase set.By liking the �Create new test ase set� link, a sreen as �gure 2.3 appear. Here the usermust deide whether a single frame test ase set or an interval test ase set is needed. Thesingle frame test sends one frame to the CAN bus, and the interval test sends a number offrames to the CAN bus. For the single frame test, the number of expeted outputs must begiven by the user, and for the interval test, the number of intervals must be given.Figure 2.4 shows the user interfae of typing in a single frame test ase set, where the numberof expeted outputs is hosen to be four. The interfae is split into three groups. The top mostgroup ontains the name, a textual desription of the test ase set, and the AAU user nameof the author. In the middle group the input CAN bus frame must be typed in, and in thebottom group, the expeted output must be typed in. If many expeted outputs have similardata values, and/or CAN identi�ers, the opy line an be very useful. The values given in the12

Web Interfae Unit 2.3 Tests

Figure 2.3: Sreen-shot of the user interfae to type in a new test ase set.opy line an be opied to all �elds below by the �Set� button below eah opy �eld. If all opy�elds must be opied to the �elds below, use the �Set all� button.Figure 2.5 shows the user interfae of typing in an interval test ase set, where the number ofintervals is hosen to be two. This interfae is split into four groups. The top most group isidential to the single frame test ase set. The next group ontains a �gure to illustrate theborders and test ases to be sent on the CAN bus. The border numbers are shown in top ofthe �gure, and the test ase numbers are shown in the bottom of the �gure.The next group ontains the �elds to de�ne the CAN bus input frames. It is done by giving theintervals of the data �elds by typing in the borders. The testbed alulates the test ases to besent. The bottom group ontains the expeted outputs on the CAN bus. The test ases in theend of the intervals maybe does not expet a reply. If this is the ase, the radio-buttons mustbe set to don't are for these test ases. The frames are still be sent to the CAN bus to seewhat happens when a subsystem reeives invalid data.As in the single frame test, a opy line an be used to ease the �lling of the forms.2.3 TestsThe test part ontains the test settings for the test to be performed.When �Test� is seleted from the main menu, an overview of the tests is shown. From here itis possible to order the tests, delete, view/edit, and reate a new test.By liking the �Create new test� button, a sreen as �gure 2.6 appears. A name and a desrip-tion must be given to the test, as well as the AAU user name of the test author. The intervaltime of sending the frames must be given in milliseonds between 1 ms and 10,000 ms, andwhether the frames must be sent in random or sequential order must be hosen. 13

2.3 Tests Web Interfae Unit

Figure 2.4: Sreen-shot of the user interfae for typing in a single frame test ase set.

14

Web Interfae Unit 2.3 Tests

Figure 2.5: Sreen-shot of the user interfae for typing in an interval test ase set.The subsystems an be simulated by using the testbed subsystem drivers. How a subsysteman be simulated an be seen in the testbed engine part of the user manual. The simulatedsubsystems an be ativated/deativated by the web user interfae.On the right a list of all the test ase sets is shown. The test ase sets to be inluded in thetest must be seleted. It is not possible to start a test without seleting at least one test aseset.The test is started by the pressing the �Create and run test� or �Modify and run test� button.When the button is pressed, the �le /testbed/id/test.id is generated. It ontains the id of thetest to be run. The testbed engine is polling this �le, and it starts the test when the �le exists.If the �le exists, the �run� button in the web user interfae will not be present, and a new testannot be started. The �le is deleted by the test bed engine when the test �nishes.In ase of omputer break down or shut down while running a test, the �le might not be deleted,and it is therefore not possible to start a new test. Then the �le must be deleted manually.15

2.4 Test Reports Web Interfae Unit

Figure 2.6: Sreen-shot of the user interfae for typing in a new test.(Type: rm -f /testbed/id/test.id in a terminal.) If the TBE is shut down manually, the �le isremoved by the TBE.When a test is started, a status bar is presented for the user on the web interfae. The preisedate and time for the test �nish is shown, and a ounter is ounting down the seonds. It isshown in �gure 2.7.2.4 Test ReportsThe test report part ontains the automati generated test reports. A test report is generatedwhen a test �nishes. The testbed engine uploads the time stamps for the frames sent to theCAN bus to the database, along with all the tra� on the CAN bus. The web interfae unitompares the expeted frames with the atual frames, and presents the result for the user.When �Test reports� is seleted from the main menu, an overview of the tests reports is shown.From here it is possible to order the test reports, delete, and view a test report.A test report is split into four parts, as seen on �gure 2.8. The top part shows the settings16

Web Interfae Unit 2.4 Test Reports

Figure 2.7: Sreen-shot of the test bed web user interfae status bar.of the test. The next part shows the expeted frames and the frame sending time stamps. Italso shows whether the expeted frames appeared on the CAN bus during the test. A red rossindiates that the expeted frame did not appear, and a green hek-mark indiates that theframes appeared. If the frame appeared, the frame number of the frame that has validated theexpeted frame is shown next to the hek-mark.The next part ontains all the CAN bus tra� during the test. The frames that has beenused to validate expeted frames are shown in bold text. In the bottom two .sv �les an bedownloaded. One ontains the expeted frames, and one ontains the CAN bus tra�. The two�les are generated every time the report is shown, if they does not exist already.

17

2.4 Test Reports Web Interfae Unit

Figure 2.8: Sreen-shot of a test report.

18

CAN Monitor Unit Chapter3The CAN monitor unit is split into two setions, namely a setion whih an send CAN frames,and a setion whih an apture CAN frames from the CAN bus.The Test Bed CAN Monitor (CMU) is shown in �gure 3.1 and the funtionality is desribed inthe following.

Figure 3.1: The Test Bed CAN Monitor.
3.1 CAN ComposerThe top part of the CMU, is for omposing and transmitting CAN frames to the CAN bus.The CMU an send standard, extended, and remote CAN frames. These options are seletedfrom radio buttons and drop down menus. Figure 3.2 shows the options for transmitting aframe.The identi�er must be typed in as deimal numbers. If standard frame is seleted, the identi�errange is between 0-2047, and extended is 0-536870912. The B0 INSANE �eld is typed in ashexadeimal from 0-FF. The B1-B7 data �eld is typed in as hexadeimal in the range from 0-FFFFFF FFFF FFFF. The frame an also be transmitted as a remote frame. Then the B0 and19

3.2 CAN Viewer CAN Monitor Unit
Figure 3.2: Composing and transmitting a frame.B1-B7 does not have any e�et. Press the green Send Frame button for sending the omposedframe.The frame an be sent from any of the 8 CAN ports on the Test Bed, this is shown in �gure 3.3.

Figure 3.3: CAN port seletion.If inorret data is typed in, the frame an not be sent. A message on the sreen displays whatis wrong. The last error message is displayed in the output window, shown in �gure 3.4. Alsofeedbak information about sent CAN frames is displayed in the output window.
Figure 3.4: Feedbak message.

3.2 CAN ViewerThe bottom part of �gure 3.1 is used for apturing CAN frames from the CAN bus. Everyaptured frame is shown in a table, as illustrated in �gure 3.5 The frame parameters providedin the table are the time of the aptured frames (in ms sine January 1, 1970), identi�er, frametype, INSANE B0, data B1-B7, and data length.In order to be able to apture CAN frames, the orange apture button has to be enabled. Tostop the apturing of CAN frames, press the apture button again. This will disable the CANbus apture. The apturing button is shown in �gure 3.6The table an be leaned by pressing the lean button. The apture button has to be disabled.20

CAN Monitor Unit 3.2 CAN Viewer

Figure 3.5: The table to present the aptured frames.

Figure 3.6: Capture and leaning frames to the CAN table.To store aptured CAN frames, disable the apture button and push the save button. A �lehandling window will appear, where the �lename of the �le, with the .sv �le extension, mustbe typed in.To load aptured CAN frames, the apture button has to be disabled. Press the load buttonand selet the desired .sv �le and press load.The �le handling buttons are shown in �gure 3.7.
Figure 3.7: Buttons for �le handling.To hange between the data format of the CAN frames, press the onverting radio buttons,for the desired format. This only a�ets new aptured frames. The buttons for hanging dataformat is shown in �gure 3.8If too many error frames are transmitted on the CAN bus, the CAN ports on the CAN ards gointo bus o� mode. This means that the ports are not able to reeive any further CAN frames.21

3.2 CAN Viewer CAN Monitor Unit

Figure 3.8: Changing data format for new aptured frames.The status of eah port is indiated by a oloured irle, as shown in �gure 3.9.
Figure 3.9: Status of the CAN ard ports.A green irle means that the given port is OK. A red irle means that the port is in bus o�mode, and a yellow irle means that the port is in error passive mode.When a port has entered bus o� mode (red irle), the given an ard an be reset by pressingthe reset button. If more than one ard is going to be reset, the �Reset all ards� button anbe used. Only CAN ards in bus o� mode are a�eted of the reset button.After a reset is arried out, a frame on the CAN bus is transmitted to on�rm the reset.The CAN frame ontains a standard frame with identi�er 2047, B0 = FF and B1-B7 =FFFFFFFFFFFFFF.Buttons, where a letter in the button label is underlined, an be ativated by keypad shortuts,by pressing ALT + the underlined har.

22

